This book is designed to help readers understand how the complex interaction of raw materials, equipment and processing conditions affect productivity and film characteristics.

Contents include:
- Raw material characteristics
- Equipment options and comparisons
- Glossary of terminology
- Troubleshooting guides for:
 - Dust, angle hair and snake skin
 - Extruder temperature profiles
 - Screw wear
 - Surging
 - Melt fracture
 - Interfacial instability
 - Gels
 - Bubble instability
 - Surface treatment
 - Wrinkles
 - Roll geometry
 - Heat sealing
 - Gauge variation
Table of Contents

Chapter 1 Polymer Properties and Terminology
Chapter 2 Feeding Systems to Gearboxes
Chapter 3 Extruder Screws and Set-up
Chapter 4 Temperature Controllers to Screen Changers
Chapter 5 Blown Film Dies
Chapter 6 Bubble Cooling
Chapter 7 Bubble Collapsing
Chapter 8 Post Extrusion Operations
Chapter 9 Troubleshooting Techniques
 Film Defects Troubleshooting Guide
 Roll Defects Troubleshooting Guide
Glossary of Terminology
About the Author

Paul Waller, P.Eng., MBA, Cert.P.P.
President
Plastics Touchpoint Group, Inc.
Website: www.plasticstouchpoint.com
E-mail: paul@plasticstouchpoint.com
Phone: (001) 416-788-9742
Skype: paul_waller1

Plastics Touchpoint Group, Inc. was established to meet the growing demand for expertise in the flexible packaging industry. The company focus is on blown and cast film extrusion and film conversion operations. Plastics Touchpoint has worked with clients throughout North America, South America, the Middle East, Africa, Australia and Asia. Clients include raw material suppliers, processors, end users, educational institutions and industry associations.

Paul Waller is a frequent presenter and trainer at conventions and professional functions as well as a prolific writer. He designed and delivered the Blown Film Technology Program for the Canadian Plastics Training Centre in Toronto, Canada and SENAI in Brazil. Mr. Waller has provided intensive in-house training to more than 1,000 operators, technicians and engineers. He has taught film troubleshooting seminars on five continents and is the first candidate to be awarded the Certified Plastics Practitioner designation for Blown Film Extrusion by the Canadian Plastics Sector Council.

Mr. Waller is a Professional Engineer licensed in the province of Ontario, Canada. He is an Honored Service Member of the Society of Plastics Engineers (SPE), past President and Councilor of the Ontario section of SPE, Chair of the Flexible Packaging division of SPE, co-chair of the Canadian Plastics Sector Council, a member of the Canadian Plastics Industry Association and the Canadian Plastics Pioneers.
Subject Index

1.23 Deformation of Molten Polymers 21
1.23.1 Viscosity versus Deformation Rate 21
1.23.2 Shear Viscosity Curve 22
1.23.3 Melt Flow Index (MFI) 22
1.23.3.1 Limitations of Melt Flow Index (MFI) 23
1.23.4 Extensional Viscosity Curve 23
1.24 Factors Affecting Polymer Degradation 24
1.24.1 Polymer Degradation Mechanisms 24
1.24.1.1 Chain Scission 24
1.24.1.2 Degradation 25
1.24.1.3 Cross-linking 25

Chapter 2 Feeding Systems to Gearboxes 27
2.1 Blown Film Terminology 27
2.2 Transverse Direction Orientation 27
2.2.1 Blow-up Ratio 27
2.3 Machine Direction Orientation 27
2.3.1 Draw-down Ratio 27
2.3.2 Take-up Ratio 27
2.4 Frost Line Height 27
2.4.1 Melt Strength Affects Bubble Shape 28
2.5 Process Time 28
2.6 Grooved Feed Throat vs. Smooth Bore Extruders 29
2.7 Bulk Conveying System Fundamentals 29
2.7.1 Bulk Conveying Venturi Effect 29
2.7.2 Dust from Bulk Conveying Systems 31
2.7.3 Misconceptions about Bulk Conveying Systems 31
2.7.3.1 Fluff and Angle Hair 31
2.7.3.2 Streamers or Snake Skin 31
2.7.4 Volumetric Blenders 32
2.7.5 Gravimetric Blenders 32
2.7.5.1 Gravimetric Feeding Principles 32
2.7.5.2 Batch (Gain-in-Weight) Gravimetric Blenders 32
2.7.5.3 Continuous (Loss-in-Weight) Gravimetric Blenders 33
2.7.6 Gravimetric Feeding Modes 34
2.7.6.1 Weight Throughput Monitor 34
2.7.6.2 Weight Throughput Control 34
2.7.6.3 Length Throughput and Weight Monitor 34
2.7.7 Common Blender Problems 34
2.7.7.1 Blender Usage and Inventory Do Not Match 34
2.7.7.2 Inconsistent Feeding Trips Blender Alarm 34
2.7.7.3 Wrong Formulation or Contamination 34
2.7.7.4 Improper Flow in the Hopper 35
2.7.8 Recycling Systems 35
2.7.9 Hopper Magnets 36
2.7.10 Motors and Drives 37
2.7.11 Gear Reducers (Gearboxes) and Thrust Bearings 37
Subject Index

2.7.11.1 Types of Gear Reducers 38
2.7.11.2 Gear Reducer Cooling Systems 38
2.7.11.3 Symptoms of Gearbox Wear 38
2.7.11.4 Direct Drive (Gearless) Extruders 38
2.7.12 Energy Consumption in Blown Film Lines 39

Chapter 3 Extruder Screws and Set-up 41
3.1 Screw Requirements 41
3.2 Grooved Feed Throat Extruders 41
3.3 Smooth Bore Extruders 42
3.4 Critical Screw Parameters 43
3.5 Solids Conveying in the Feed Zone 43
3.5.1 Effect of Friction in Feed Zone 43
3.5.2 Effect of Temperature in Grooved Feed Zone 44
3.5.3 Effect of Temperature in Smooth Bore Feed Zone 44
3.6 Melting and Conveying in Transition Zone 45
3.6.1 Effect of Friction and Conduction on Melting Rate 45
3.6.2 Melting Progression in Transition Zone 45
3.6.3 Solids Bed Ratio 46
3.6.4 Determining Screw Output in the Metering Zone 46
3.6.4.1 Drag Flow 47
3.6.4.2 Pressure Flow 47
3.6.4.3 Effect of Drag and Pressure Flow on Velocity Profile 47
3.6.4.4 Leakage Flow 48
3.6.4.5 Net Melt Conveying Flow (Total Flow) 48
3.6.4.6 Pressure Profile along the Barrel 48
3.7 Summary of Grooved Feed vs. Smooth Bore Extruders 49
3.7.1 Grooved Feed Throat Characteristics 49
3.7.2 Smooth Bore Feed Throat Characteristics 49
3.8 Barrier Screw Designs 49
3.8.1 Comparison of Conventional versus Barrier Screws 50
3.8.1.1 Temperature Profile across Screw Channel 50
3.9 Effect of Increasing Screw Speed 51
3.10 Mixing Mechanisms 53
3.10.1 Distributive Mixing 53
3.10.1.1 Cavity Transfer Mixer 53
3.10.1.2 Mixing Pins 53
3.10.2 Dispersive Mixing 54
3.10.2.1 Blister Ring Mixer 54
3.10.2.2 Maddock (Fluted) Mixer 54
3.10.2.3 Spiral Fluted Mixer 54
3.11 Optimizing Extruder Barrel Temperature Profiles 55
3.11.1 Strategies to Optimize Barrel Temperature Profiles 55
3.11.1.1 Design of Experiment (DOE) 55
3.11.1.2 Dynamic Optimization (DO) 56
3.11.1.3 One-at-a-Time Experiment (OTE) 56
3.11.2 Extruder Temperature Profiles 56
3.11.2.1 Gradually Increasing (Ramped) Barrel Temperature Profile 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.11.2.2</td>
<td>Reverse Barrel Temperature Profile</td>
<td>57</td>
</tr>
<tr>
<td>3.11.2.3</td>
<td>Humped Barrel Temperature Profile</td>
<td>58</td>
</tr>
<tr>
<td>3.11.2.4</td>
<td>Flat Barrel Temperature Profile</td>
<td>59</td>
</tr>
<tr>
<td>3.12</td>
<td>Materials of Barrel and Screw Construction</td>
<td>59</td>
</tr>
<tr>
<td>3.13</td>
<td>Screw and Barrel Wear</td>
<td>60</td>
</tr>
<tr>
<td>3.13.1</td>
<td>Nominal Screw and Barrel Clearance</td>
<td>60</td>
</tr>
<tr>
<td>3.13.2</td>
<td>Symptoms of Screw Wear</td>
<td>60</td>
</tr>
<tr>
<td>3.13.3</td>
<td>Short Term Strategies to Compensate for Screw Wear</td>
<td>61</td>
</tr>
<tr>
<td>3.13.4</td>
<td>Effect of Screw and Barrel Wear</td>
<td>61</td>
</tr>
<tr>
<td>3.13.5</td>
<td>Long Term Strategies to Compensate for Screw Wear</td>
<td>62</td>
</tr>
<tr>
<td>3.14</td>
<td>Chapter 4 Temperature Controllers to Screen Changers</td>
<td>63</td>
</tr>
<tr>
<td>4.1</td>
<td>Barrel Heating and Cooling Systems</td>
<td>63</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Air Cooled Systems</td>
<td>63</td>
</tr>
<tr>
<td>4.1.1.1</td>
<td>Mica or Ceramic Heaters</td>
<td>63</td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>Finned Aluminum Heaters</td>
<td>63</td>
</tr>
<tr>
<td>4.1.3.1</td>
<td>Infrared Heaters</td>
<td>63</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Liquid Cooled Systems</td>
<td>64</td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>Liquid Cooled Barrel Heater</td>
<td>64</td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>Liquid Cooled Barrel Circuit</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Principles of Process Control</td>
<td>65</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Controller Terminology</td>
<td>65</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Set Point</td>
<td>65</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Measured Value</td>
<td>65</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Control Error</td>
<td>65</td>
</tr>
<tr>
<td>4.2.1.4</td>
<td>Alignment</td>
<td>65</td>
</tr>
<tr>
<td>4.2.2</td>
<td>On/Off Control Mode</td>
<td>65</td>
</tr>
<tr>
<td>4.2.3</td>
<td>PID Controllers</td>
<td>66</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>PID Control Functions</td>
<td>66</td>
</tr>
<tr>
<td>4.2.3.1.1</td>
<td>Proportional (How Much)</td>
<td>66</td>
</tr>
<tr>
<td>4.2.3.1.2</td>
<td>Integral (How Often)</td>
<td>66</td>
</tr>
<tr>
<td>4.2.3.1.3</td>
<td>Derivative (How Fast)</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Barrel Exit Components</td>
<td>66</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Rupture Disk</td>
<td>67</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Breaker Plate and Screens</td>
<td>67</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Non-Continuous Screen Changers</td>
<td>68</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Pressure Cycle</td>
<td>68</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Continuous Screen Changers</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>Mixing Devices</td>
<td>70</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Dynamic Mixers</td>
<td>70</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Static Mixers</td>
<td>71</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Process Instabilities (Surging)</td>
<td>71</td>
</tr>
<tr>
<td>4.4.3.1</td>
<td>Strategies to Avoid Very Slow Speed Instabilities</td>
<td>71</td>
</tr>
<tr>
<td>4.4.3.2</td>
<td>Feeding Related Surging</td>
<td>71</td>
</tr>
<tr>
<td>4.4.3.2.1</td>
<td>Solids Conveying Variations in Feed Zone</td>
<td>72</td>
</tr>
<tr>
<td>4.4.3.2.2</td>
<td>Strategies to Avoid Solids Conveying Variations in Feed Zone</td>
<td>72</td>
</tr>
<tr>
<td>4.4.3.2.3</td>
<td>Solids Bed Wedging in Transition Zone</td>
<td>73</td>
</tr>
<tr>
<td>4.4.3.2.4</td>
<td>Symptoms of Solids Bed Wedging in Transition Zone</td>
<td>73</td>
</tr>
</tbody>
</table>
Subject Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.2</td>
<td>Lens or Hollow Gels</td>
<td>98</td>
</tr>
<tr>
<td>5.6.2.1</td>
<td>Solutions for Lens (Hollow) Gels</td>
<td>98</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Arrowhead, Chevron, V or J type, Chevron, Platelet and Disc Gels</td>
<td>99</td>
</tr>
<tr>
<td>5.6.3.1</td>
<td>Solutions for Arrowhead, Chevron, V, J, Platelet, Disc Gels</td>
<td>99</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Discolored or Cross-linked Gels</td>
<td>100</td>
</tr>
<tr>
<td>5.6.4.1</td>
<td>Symptoms of Overheating Degradation</td>
<td>100</td>
</tr>
<tr>
<td>5.6.4.2</td>
<td>Symptoms of Chain Scission Degradation</td>
<td>100</td>
</tr>
<tr>
<td>5.6.4.3</td>
<td>Symptoms of Oxidative Degradation</td>
<td>100</td>
</tr>
<tr>
<td>5.6.4.4</td>
<td>Symptoms of Cross Linking Degradation</td>
<td>100</td>
</tr>
<tr>
<td>5.6.4.5</td>
<td>Solutions for Discolored or Cross-linked Gels</td>
<td>101</td>
</tr>
<tr>
<td>5.7</td>
<td>Purging Techniques</td>
<td>101</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Preventative Maintenance Purging</td>
<td>101</td>
</tr>
<tr>
<td>5.7.1.1</td>
<td>Controlled Shutdown Technique</td>
<td>101</td>
</tr>
<tr>
<td>5.7.1.2</td>
<td>Start-Up Procedure</td>
<td>102</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Process Interruption Purging</td>
<td>103</td>
</tr>
<tr>
<td>5.7.2.1</td>
<td>Stable Scouring</td>
<td>103</td>
</tr>
<tr>
<td>5.7.2.1.1</td>
<td>Chemical Purge</td>
<td>103</td>
</tr>
<tr>
<td>5.7.2.1.2</td>
<td>Mechanical Purge</td>
<td>103</td>
</tr>
<tr>
<td>5.7.2.2</td>
<td>Cyclic Scouring (Disco Purge)</td>
<td>103</td>
</tr>
<tr>
<td>5.7.2.3</td>
<td>Disassembly and Cleaning</td>
<td>104</td>
</tr>
</tbody>
</table>

Chapter 6 Bubble Cooling

6.1 Bubble Cooling Systems 105
6.2 Principles of Air Ring Design 105
6.3 Air Ring Adjustment Principles 106
6.3.1 Air Ring Adjustment Rules 106
6.3.2 Air Ring Control (Locking) Points 107
6.3.3 Manipulation of Air Ring Control (Locking) Points 107
6.3.4 Windmöeller and Höelscher Single Lip Air Ring 108
6.3.5 Future Design Genie Perforated Chimney Dual Lip Air Ring 108
6.3.6 Macro Engineering Dual Lip Air Ring with Stabilizer Rings 108
6.3.7 Gloucester Engineering Polycool® Dual Lip Air Ring with Iris 109
6.3.8 Air Ring Chamber Designs to Minimize Vortex Air Flow 109
6.3.8.1 Davis Standard Westjet Dual Lip Air Ring Diffuser 109
6.4 Effect of Air Ring Sealing Systems on TD Gauge Bands 110
6.5 HDPE Air Ring Setup Controls Film Properties 110
6.6 Enhanced Bubble Cooling Techniques 110
6.6.1 Stacked Air Rings 111
6.6.1.1 Macro Engineering Binary Cooling System 111
6.6.2 Chilled Bubble Mandrels 111
6.6.3 Internal Bubble Cooling (IBC) 111
6.6.3.1 Comparison of Common IBC Control Systems 112
6.6.3.2 D.R. Joseph IBC System with Layflat Control 112
6.6.3.3 Function of IBC Valves 113
6.6.3.4 Reserve Factor and Bubble Inflation Time 113
6.6.3.5 Advanced IBC Control Systems 114
6.6.3.6 Pancake Style IBC Air Diffuser Nested Spiral Dies 114
6.6.3.7 TD Gauge Variation in Non-IBC versus IBC Dies 115
<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.3.8 Pancake Style Air Diffuser for IBC Stack with Stacked Dies</td>
</tr>
<tr>
<td>6.7 Waller’s Rule of Melt Temperature</td>
</tr>
<tr>
<td>6.8 Typical Die Specific Output Rates</td>
</tr>
<tr>
<td>6.9 Bubble Stabilizers</td>
</tr>
<tr>
<td>6.9.1 Rod Stabilizers</td>
</tr>
<tr>
<td>6.9.2 Radial versus Iris Cage Designs</td>
</tr>
<tr>
<td>6.9.3 Radial versus Iris Cage Designs</td>
</tr>
<tr>
<td>6.10 Bubble Instability</td>
</tr>
<tr>
<td>6.10.1 Common Causes of Bubble Instability</td>
</tr>
<tr>
<td>6.10.2 Types of Bubble Instability</td>
</tr>
<tr>
<td>6.10.2.1 Draw Resonance</td>
</tr>
<tr>
<td>6.10.2.1.1 Adjustments to Eliminate Draw Resonance</td>
</tr>
<tr>
<td>6.10.2.2 Helical Instability</td>
</tr>
<tr>
<td>6.10.2.2.1 Adjustments to Eliminate Helical Instability</td>
</tr>
<tr>
<td>6.10.2.3 Bubble Breathing</td>
</tr>
<tr>
<td>6.10.2.3.1 Slow Bubble Breathing</td>
</tr>
<tr>
<td>6.10.2.3.1.1 Effect of Improper IBC Sensor Position</td>
</tr>
<tr>
<td>6.10.2.3.1.2 Effect of Leaking IBC Air Plenums</td>
</tr>
<tr>
<td>6.10.2.3.1.3 Adjustments to Eliminate Slow Bubble Breathing</td>
</tr>
<tr>
<td>6.10.2.3.2 Fast Bubble Breathing</td>
</tr>
<tr>
<td>6.10.2.3.2.1 Adjustments to Eliminate Fast Bubble Breathing</td>
</tr>
<tr>
<td>6.10.2.3.3 Bubble Sag</td>
</tr>
<tr>
<td>6.10.2.3.3.1 Adjustments to Eliminate Bubble Sag</td>
</tr>
<tr>
<td>6.10.2.3.4 Bubble Tear</td>
</tr>
<tr>
<td>6.10.2.3.4.1 Adjustments to Eliminate Bubble Tear</td>
</tr>
<tr>
<td>6.10.2.3.5 Bubble Flutter</td>
</tr>
<tr>
<td>6.10.2.3.5.1 Adjustments to Eliminate Bubble Flutter</td>
</tr>
<tr>
<td>6.11 Automatic Gauge Control Systems</td>
</tr>
<tr>
<td>6.11.1 Standard Deviation</td>
</tr>
<tr>
<td>6.11.2 Automatic Gauge Control Techniques</td>
</tr>
<tr>
<td>6.11.2.1 Air Ring</td>
</tr>
<tr>
<td>6.11.2.2 Melt Temperature</td>
</tr>
<tr>
<td>6.11.2.3 Die Gap</td>
</tr>
<tr>
<td>6.11.2.4 IBC</td>
</tr>
<tr>
<td>6.11.3 On-Line Sensor Systems for Automatic Gauge Controllers</td>
</tr>
</tbody>
</table>

Chapter 7 Bubble Collapsing

7.1 Collapsing the Bubble	131
7.2 Optimizing the Collapsing Frame Angle	132
7.3 Formation of Horizontal Wrinkles	132
7.4 Collapsing Frame Surfaces	133
7.5 Gusseters and Side Stabilizers	133
7.6 Primary Nips (Haul-Offs)	134
7.7 Effect of Oscillating Nips on Gauge Randomization	135
7.8 Oscillating Nip Designs	136
7.8.1 Central Pivot Horizontal Oscillating Nip	136
7.8.2 Stacked Ring Horizontal Oscillating Nip	137
7.8.3 Vertical Oscillating Nip	137
Subject Index

7.9 Causes of Layflat Edge Movement 138
7.10 Causes of Layflat Width Variation 139
7.11 Collapsing Surface Adjustment Principles 139
7.12 Summary of Sources of Layflat Width Variation 140

Chapter 8 Post Extrusion Operations 141
8.1 Surface Treatment Fundamentals 141
8.1.1 SI Units 141
8.1.2 US Units 141
8.1.3 Surface Tensions for Common Inks and Substrates 141
8.1.4 Surface Treatment Mechanisms 142
8.1.5 Watt Density Formula for Corona Treaters 142
8.1.6 Effect of Additives on Watt Density Requirements 143
8.1.7 Causes of Changes in Film Surface Tension 143
8.1.8 Causes of Poor Surface Treatment 144
8.1.8.1 Back side Surface Treatment 145
8.1.8.2 Misaligned or Dirty Electrodes 145
8.1.8.3 Loose Electrodes 146
8.2 Causes of Static Build-up and Control Techniques 146
8.3 Wrinkle Eliminators 147
8.3.1 Fixed Bowed Spreader Rollers 147
8.3.2 Spiral Grooved Spreader Rollers 147
8.3.3 Elastic Expander Spreader Rollers 148
8.4 Tension and Elastic Modulus 148
8.5 Edge Variation Patterns 148
8.6 Slitting Defects 149
8.7 Slit Seal Defects 149
8.8 Seal Cutter System 150
8.9 Web Guides 150
8.10 Wrinkles 151
8.10.1 Wrinkle Patterns 151
8.10.2 Causes of MD Wrinkles 152
8.10.3 Causes of Diagonal Wrinkles 152
8.11 Tension Control Fundamentals 152
8.11.1 Tension Control Zones 153
8.11.1.1 Load Cell Web Tension Controller 153
8.11.1.2 Vertical Dancer Assembly Web Tension Controller 153
8.11.1.3 Horizontal Dancer Assembly Web Tension Controller 154
8.12 Winding Fundamentals 154
8.12.1 Typical Web Tension Ranges 155
8.12.2 Effect of Winding Tension of Coefficient of Friction 155
8.13 Types of Winders 156
8.13.1 Surface / Drum Winders Advantages 156
8.13.1.1 Surface Winder Configuration 156
8.13.1.2 Surface / Center Driven Winder Configuration 156
8.13.1.3 Gap Surface Winder Configuration 157
8.13.2 Center Driven Winders Advantages 157
8.13.3 Air Shaft Capacity and Limitations 157
Subject Index

8.14 Roll Defects 158
8.14.1 Starred or Spoked Rolls 158
8.14.1.1 Solutions for Starred or Spoked Rolls 159
8.14.2 Taper Tension 159
8.14.3 Buckled Rolls 160
8.14.3.1 Solutions for Buckled Rolls 160
8.14.4 Tapered Rolls 160
8.14.4.1 Solutions for Tapered Rolls 161
8.14.5 Telescoped Rolls 161
8.14.5.1 Solutions for Telescoping Rolls 162
8.14.6 Ringed Rolls 162
8.14.6.1 Solutions for Ringed Rolls 162
8.14.7 Tin Canning 163
8.14.7.1 Solutions for Tin Canning 163
8.15 Bag Machines Fundamentals 163
8.15.1 Bag Machines Accumulator Mechanism 163
8.15.2 Sealing Head and Platen in Shuttle Bag Machine 164
8.15.3 Bag Machine Blades 165
8.15.4 Separators 166
8.15.5 Causes of Low Heat Seal Strength 166
8.16 Gauge Variation 167
8.16.1 Basis Weight Measurement Technique 167
8.16.2 Manual Measurement Techniques 168
8.16.3 Mechanical Micrometer Calibration Techniques 168
8.16.4 Cleaning and Recalibration Procedure 169
8.16.5 Parallelism Test and Adjustment Procedure 169
8.16.6 General Causes of Machine Direction Gauge Variation 170
8.16.7 Causes of Transverse Direction Gauge Variation 170
8.16.8 Equipment Problems Causing TD Gauge Variation 171
8.17 Bench Top Gauge Profilers 173
8.17.1 Fourier Series Analysis of Gauge Variation 174

Chapter 9 Troubleshooting Techniques 177
9.1 Scientific Method for Troubleshooting 177
9.2 Quality Control Strategies 177
9.3 ISO 9000 177
9.4 Success Factors for Troubleshooting 178
9.5 Minimum Sample Size Requirements for General Tests 178
The following guide summarizes the troubleshooting tips described in the manual. The blown film line is split into several zones to remind operators which area of the line should be examined when problems occur. Each problem includes causes split into raw material, processing conditions and equipment. Recommendations for each cause are included.

Blown Film Troubleshooting Guide 179
Film Defects Troubleshooting Guide Index 179
Roll Defects Troubleshooting Guide Index 180

Film Defects Troubleshooting Guide 183
Blocking 183
Die lines, weld lines (MD) 184
Gels - Apple sauce (very small gels) 184
Gels - Arrow heads, chevrons (“V” or “J”) 185
Gels - Discol-ored 186
Gels - Fisheye, platelet, disc 186
Gels – Hollow or Void 187
Low gloss, high haze, low clarity 188
Low heat seal strength 188
MD gauge variation 189
Melt fracture and shark skin 191
Interfacial instability - short wave pattern 191
Interfacial instability - short and long wave patterns 192
Port lines 192
Poor surface treatment 192
Scratches (MD) 193
Splitty film (low MD tear strength) 193
Streaks in MD 194
Streaks in TD 194
TD gauge variation 195
Uneven film or sheet width 197
Uneven gussets 198
Weak edge folds 198
Wrong color 199
Roll Defects Troubleshooting Guide 200
Baggy edges 200
Buckled rolls 200
Bumpy rolls (Tin Canning) 200
Folds, creases 201
Non uniform surface hardness 201
Ringed rolls (fuzzy edges) 201
Roll too hard 202
Roll too soft 202
Sag in film (soft in middle of roll) 202
Starred rolls or crushed cores 203
Tapered, convex or concave rolls 203
Telescoped rolls 204
Uneven roll width 204
Wrinkles in roll 205